Anonymization of centralized and distributed social networks by sequential clustering

Tamir Tassa, Dror J. Cohen

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

We study the problem of privacy-preservation in social networks. We consider the distributed setting in which the network data is split between several data holders. The goal is to arrive at an anonymized view of the unified network without revealing to any of the data holders information about links between nodes that are controlled by other data holders. To that end, we start with the centralized setting and offer two variants of an anonymization algorithm which is based on sequential clustering (Sq). Our algorithms significantly outperform the SaNGreeA algorithm due to Campan and Truta which is the leading algorithm for achieving anonymity in networks by means of clustering. We then devise secure distributed versions of our algorithms. To the best of our knowledge, this is the first study of privacy preservation in distributed social networks. We conclude by outlining future research proposals in that direction.

اللغة الأصليةالإنجليزيّة
رقم المقال6081867
الصفحات (من إلى)311-324
عدد الصفحات14
دوريةIEEE Transactions on Knowledge and Data Engineering
مستوى الصوت25
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - فبراير 2013

بصمة

أدرس بدقة موضوعات البحث “Anonymization of centralized and distributed social networks by sequential clustering'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا