ملخص
Modern-day recommender systems are often based on learning representations in a latent vector space that encode user and item preferences. In these models, each user/item is represented by a single vector and user-item interactions are modeled by some function over the corresponding vectors. This paradigm is common to a large body of collaborative filtering models that repeatedly demonstrated superior results. In this work, we break away from this paradigm and present ACF: Anchor-based Collaborative Filtering. Instead of learning unique vectors for each user and each item, ACF learns a spanning set of anchor-vectors that commonly serve both users and items. In ACF, each anchor corresponds to a unique "taste'' and users/items are represented as a convex combination over the spanning set of anchors. Additionally, ACF employs two novel constraints: (1) exclusiveness constraint on item-to-anchor relations that encourages each item to pick a single representative anchor, and (2) an inclusiveness constraint on anchors-to-items relations that encourages full utilization of all the anchors. We compare ACF with other state-of-the-art alternatives and demonstrate its effectiveness on multiple datasets.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | CIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management |
ناشر | Association for Computing Machinery |
الصفحات | 2877-2881 |
عدد الصفحات | 5 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781450384469 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 26 أكتوبر 2021 |
الحدث | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, أستراليا المدة: ١ نوفمبر ٢٠٢١ → ٥ نوفمبر ٢٠٢١ |
سلسلة المنشورات
الاسم | International Conference on Information and Knowledge Management, Proceedings |
---|
!!Conference
!!Conference | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 |
---|---|
الدولة/الإقليم | أستراليا |
المدينة | Virtual, Online |
المدة | ١/١١/٢١ → ٥/١١/٢١ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2021 ACM.