ملخص
Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition. In this paper we show that by learning representations through the use of deep-convolutional neural networks (CNN), a significant increase in performance can be obtained on these tasks. To this end, we propose a simple convolutional net architecture that can be used even when the amount of learning data is limited. We evaluate our method on the recent Adience benchmark for age and gender estimation and show it to dramatically outperform current state-of-the-art methods.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2015 |
ناشر | IEEE Computer Society |
الصفحات | 34-42 |
عدد الصفحات | 9 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781467367592 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 19 أكتوبر 2015 |
الحدث | IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2015 - Boston, الولايات المتّحدة المدة: ٧ يونيو ٢٠١٥ → ١٢ يونيو ٢٠١٥ |
سلسلة المنشورات
الاسم | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
مستوى الصوت | 2015-October |
رقم المعيار الدولي للدوريات (المطبوع) | 2160-7508 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 2160-7516 |
!!Conference
!!Conference | IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2015 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Boston |
المدة | ٧/٠٦/١٥ → ١٢/٠٦/١٥ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2015 IEEE.