Adaptive Fuzzy-Based Models for Attenuation Time Series Forecasting

Dror Jacoby, Jonatan Ostrometzky, Hagit Messer

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models' accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model's performance by 30 - 40%, depending on the specific model and the data availability.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021
ناشرInstitute of Electrical and Electronics Engineers Inc.
الصفحات522-528
عدد الصفحات7
رقم المعيار الدولي للكتب (الإلكتروني)9780738146720
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2021
منشور خارجيًانعم
الحدث2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021 - Tel Aviv, إسرائيل
المدة: ١ نوفمبر ٢٠٢١٣ نوفمبر ٢٠٢١

سلسلة المنشورات

الاسم2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021

!!Conference

!!Conference2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021
الدولة/الإقليمإسرائيل
المدينةTel Aviv
المدة١/١١/٢١٣/١١/٢١

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 IEEE.

بصمة

أدرس بدقة موضوعات البحث “Adaptive Fuzzy-Based Models for Attenuation Time Series Forecasting'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا