A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer, Chenliang Xu, Mark Ibrahim

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Machine learning models have been found to learn shortcuts - unintended decision rules that are unable to generalize - undermining models' reliability. Previous works address this problem under the tenuous assumption that only a single shortcut exists in the training data. Real-world images are rife with multiple visual cues from background to texture. Key to advancing the reliability of vision systems is understanding whether existing methods can overcome multiple shortcuts or struggle in a Whac-A-Mole game, i.e., where mitigating one shortcut amplifies reliance on others. To address this shortcoming, we propose two benchmarks: 1) UrbanCars, a dataset with precisely controlled spurious cues, and 2) ImageNet-W, an evaluation set based on ImageNet for watermark, a shortcut we discovered affects nearly every modern vision model. Along with texture and background, ImageNet-W allows us to study multiple shortcuts emerging from training on natural images. We find computer vision models, including large foundation models - regardless of training set, architecture, and supervision - struggle when multiple shortcuts are present. Even methods explicitly designed to combat shortcuts struggle in a Whac-A-Mole dilemma. To tackle this challenge, we propose Last Layer Ensemble, a simple-yet-effective method to mitigate multiple shortcuts without Whac-A-Mole behavior. Our results surface multi-shortcut mitigation as an overlooked challenge critical to advancing the reliability of vision systems. The datasets and code are released: https://github.com/facebookresearch/Whac-A-Mole.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
ناشرIEEE Computer Society
الصفحات20071-20082
عدد الصفحات12
رقم المعيار الدولي للكتب (الإلكتروني)9798350301298
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2023
الحدث2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, كندا
المدة: ١٨ يونيو ٢٠٢٣٢٢ يونيو ٢٠٢٣

سلسلة المنشورات

الاسمProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
مستوى الصوت2023-June
رقم المعيار الدولي للدوريات (المطبوع)1063-6919

!!Conference

!!Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
الدولة/الإقليمكندا
المدينةVancouver
المدة١٨/٠٦/٢٣٢٢/٠٦/٢٣

ملاحظة ببليوغرافية

Publisher Copyright:
© 2023 IEEE.

بصمة

أدرس بدقة موضوعات البحث “A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا