A tight linear time (1/2)-approximation for unconstrained submodular maximization

Niv Buchbinder, Moran Feldman, Joseph Naor, Roy Schwartz

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

ملخص

We consider the Unconstrained Sub modular Maximization problem in which we are given a non-negative sub modular function f:2N → ℝ+, and the objective is to find a subset S ⊆ N maximizing f(S). This is one of the most basic sub modular optimization problems, having a wide range of applications. Some well known problems captured by Unconstrained Sub modular Maximization include Max-Cut, Max-DiCut, and variants of Max-SAT and maximum facility location. We present a simple randomized linear time algorithm achieving a tight approximation guarantee of 1/2, thus matching the known hardness result of Feige et al. Our algorithm is based on an adaptation of the greedy approach which exploits certain symmetry properties of the problem. Our method might seem counterintuitive, since it is known that the greedy algorithm fails to achieve any bounded approximation factor for the problem.

اللغة الأصليةالإنجليزيّة
رقم المقال6375344
الصفحات (من إلى)649-658
عدد الصفحات10
دوريةProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2012
منشور خارجيًانعم
الحدث53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012 - New Brunswick, NJ, الولايات المتّحدة
المدة: ٢٠ أكتوبر ٢٠١٢٢٣ أكتوبر ٢٠١٢

بصمة

أدرس بدقة موضوعات البحث “A tight linear time (1/2)-approximation for unconstrained submodular maximization'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا