A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2

Guy Kortsarz, Zeev Nutov

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

The Tree Augmentation Problem (TAP) is as follows: given a connected graph G = (V, ε) and an edge set E on V, find a minimum size subset of edges F ⊆ E such that (V, ε cup F) is 2-edge-connected. In the conference version [Even et al. 2001] was sketched a 1.5-approximation algorithm for the problem. Since a full proof was very complex and long, the journal version was cut into two parts. The first part [Even et al. 2009] only proved ratio 1.8. An attempt to simplify the second part produced an error in Even et al. [2011]. Here we give a correct, different, and self-contained proof of the ratio 1.5 that is also substantially simpler and shorter than the previous proofs.

اللغة الأصليةالإنجليزيّة
رقم المقال23
دوريةACM Transactions on Algorithms
مستوى الصوت12
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - نوفمبر 2015

ملاحظة ببليوغرافية

Publisher Copyright:
© 2015 ACM 1549-6325/2015/11-ART23 $15.00.

بصمة

أدرس بدقة موضوعات البحث “A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا