ملخص
In recent years, several studies proposed privacy-preserving algorithms for solving Distributed Constraint Optimization Problems (DCOPs). All of those studies assumed that agents do not collude. In this study we propose the first privacy-preserving DCOP algorithm that is immune to coalitions, under the assumption of honest majority. Our algorithm - PC-SyncBB - is based on the classical Branch and Bound DCOP algorithm. It offers constraint, topology and decision privacy. We evaluate its performance on different benchmarks, problem sizes, and constraint densities. We show that achieving security against coalitions is feasible. As all existing privacy-preserving DCOP algorithms base their security on assuming solitary conduct of the agents, we view this study as an essential first step towards lifting this potentially harmful assumption in all those algorithms.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
المحررون | Sarit Kraus |
ناشر | International Joint Conferences on Artificial Intelligence |
الصفحات | 4774-4780 |
عدد الصفحات | 7 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9780999241141 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2019 |
الحدث | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, الصين المدة: ١٠ أغسطس ٢٠١٩ → ١٦ أغسطس ٢٠١٩ |
سلسلة المنشورات
الاسم | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
مستوى الصوت | 2019-August |
رقم المعيار الدولي للدوريات (المطبوع) | 1045-0823 |
!!Conference
!!Conference | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
---|---|
الدولة/الإقليم | الصين |
المدينة | Macao |
المدة | ١٠/٠٨/١٩ → ١٦/٠٨/١٩ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.