A polynomial rooting approach to the localization of coherently scattered sources

Jason Goldberg, Hagit Messer

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The problem of passive localization of coherently scattered sources with an array of sensors is considered. The spatial extent of such a source is typically characterized by an angular mean and an angular spreading parameter. The maximum likelihood (ML) estimator for this problem requires a complicated search of dimension equal to twice the number of sources. However, a previously reported sub-optimal MUSIC type method reduces the search dimension to two (independently of the number of sources). In this paper, the search over the angular mean parameter in the above MUSIC type technique is replaced by a possibly more efficient polynomial rooting procedure. Computer simulations verify the effectiveness of the proposed method compared to the performance of the ML and MUSIC estimators as well as to the Cramer-Rao bound.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998
ناشرInstitute of Electrical and Electronics Engineers Inc.
الصفحات2057-2060
عدد الصفحات4
رقم المعيار الدولي للكتب (المطبوع)0780344286, 9780780344280
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1998
منشور خارجيًانعم
الحدث1998 23rd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998 - Seattle, WA, الولايات المتّحدة
المدة: ١٢ مايو ١٩٩٨١٥ مايو ١٩٩٨

سلسلة المنشورات

الاسمICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
مستوى الصوت4
رقم المعيار الدولي للدوريات (المطبوع)1520-6149

!!Conference

!!Conference1998 23rd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998
الدولة/الإقليمالولايات المتّحدة
المدينةSeattle, WA
المدة١٢/٠٥/٩٨١٥/٠٥/٩٨

بصمة

أدرس بدقة موضوعات البحث “A polynomial rooting approach to the localization of coherently scattered sources'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا