ملخص
We obtain approximation ratio (equation presented) for the (undirected) k-Connected Subgraph problem, where l = (equation presented) is the largest integer such that 2l−1k2l+1 ≤ n. For large values of n this improves the ratio 6 of Cheriyan and Végh [4] when n ≥ k3 (the case l = 1). Our result implies an fpt-approximation ratio 4 + ε that matches (up to the “+ε” term) the best known ratio 4 for k = 6, 7 for both the general and the easier augmentation versions of the problem. Similar results are shown for the problem of covering an arbitrary crossing supermodular biset function.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |
المحررون | Shuchi Chawla |
ناشر | Association for Computing Machinery |
الصفحات | 1000-1009 |
عدد الصفحات | 10 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781611975994 |
حالة النشر | نُشِر - 2020 |
الحدث | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, الولايات المتّحدة المدة: ٥ يناير ٢٠٢٠ → ٨ يناير ٢٠٢٠ |
سلسلة المنشورات
الاسم | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
مستوى الصوت | 2020-January |
!!Conference
!!Conference | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Salt Lake City |
المدة | ٥/٠١/٢٠ → ٨/٠١/٢٠ |
ملاحظة ببليوغرافية
Publisher Copyright:Copyright © 2020 by SIAM