ملخص
One of the first and most remarkable successes in neuromorphic (brain-inspired) engineering was the development of bio-inspired event cameras, which communicate transients in luminance as events. Here we evaluate the combination of the Channel and Spatial Reliability Tracking (CSRT) algorithm and the LapDepth neural network for the implementation of 3D object tracking with event cameras. We show that following image reconstruction, implemented using the FireNet convolution neural network, visual features are augmented, dramatically increasing tracking performance. We utilized the 3D tracker to neuromorphically represent error-correcting signals. These error-correcting signals can further be used for motion correction in adaptive neurorobotics.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781728172040 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2021 |
الحدث | 2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021 - Virtual, Online, ألمانيا المدة: ٦ أكتوبر ٢٠٢١ → ٩ أكتوبر ٢٠٢١ |
سلسلة المنشورات
الاسم | BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings |
---|
!!Conference
!!Conference | 2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021 |
---|---|
الدولة/الإقليم | ألمانيا |
المدينة | Virtual, Online |
المدة | ٦/١٠/٢١ → ٩/١٠/٢١ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2021 IEEE.